Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 43(2): 786-792, Apr.-June 2012. graf, tab
Article in English | LILACS | ID: lil-644497

ABSTRACT

Dermatophytosis is caused by a group of pathogenic fungi namely, dermatophytes, is among the most prevalent infectious diseases worldwide. Azole drugs are widely used in the treatment of dermatomycosis, but can cause various side effects and drug resistance to the patients. Hence, for solving this problem can be used from the plant extract as alternative for chemical drugs. Allicin is a pure bioactive compound isolated from garlic was tested for its potential as a treatment of dermatomycosis in this study. This study evaluated the in vitro efficacy of pure allicin against ten isolates of Trichophyton rubrum and the MIC50 and MIC90 ranged from 0.78-12.5 µg/ml for allicin. The results revealed that the order of efficacy based on the MICs values, all isolates showed almost comparable response to allicin and ketoconazole except for some isolates, at 28 ºC for both 7 and 10 days incubation. Mann-Whitney test indicate that MICs at 7 days incubation was not observed a significant difference between the effects of allicin and ketoconazole (p > 0.05), but MICs at 10 days incubation, a significant difference was observed (p < 0.05). On the other side, time kill studies revealed that allicin used its fungicidal activity within 12-24 h of management in vitro as well as ketoconazole. In conclusion, allicin showed very good potential as an antifungal compound against mycoses-causing dermatophytes, almost the same as the synthetic drug ketoconazole. Therefore, this antifungal agent appears to be effective, safe and suitable alternative for the treatment of dermatomycosis.


Subject(s)
Humans , Antifungal Agents/isolation & purification , Arthrodermataceae/isolation & purification , Dermatomycoses , Drug Resistance, Microbial , In Vitro Techniques , Trichophyton/isolation & purification , Methods , Microbial Sensitivity Tests , Patients , Treatment Outcome
2.
Braz. j. microbiol ; 41(2): 461-466, Apr.-June 2010. tab, ilus
Article in English | LILACS | ID: lil-545355

ABSTRACT

The use of biologically derived metal nanoparticles for various proposes is going to be an issue of considerable importance; thus, appropriate methods should be developed and tested for the biological synthesis and recovery of these nanoparticles from bacterial cells. In this research study, a strain of Klebsiella pneumoniae was tested for its ability to synthesize elemental selenium nanoparticles from selenium chloride. A broth of Klebsiella pneumoniae culture containing selenium nanoparticles was subjected to sterilization at 121ºC and 17 psi for 20 minutes. Released selenium nanoparticles ranged in size from 100 to 550 nm, with an average size of 245 nm. Our study also showed that no chemical changes occurred in selenium nanoparticles during the wet heat sterilization process. Therefore, the wet heat sterilization process can be used successfully to recover elemental selenium from bacterial cells.


Subject(s)
Klebsiella pneumoniae/isolation & purification , Metal Nanoparticles/analysis , Sterilization , Selenium/analysis , Methods , Chemistry Techniques, Synthetic , Methods
SELECTION OF CITATIONS
SEARCH DETAIL